The Crab pulsar as seen by the MAGIC telescopes

Outline
- The MAGIC telescopes
- Mono observations
- Stereo observations
Collaboration: ~ 150 Physicists, 21 Institutes, 8 Countries:

La Palma, IAC
28° North, 18° West

~2240 m asl

MAGIC in La Palma, Canary Islands, Spain

MAGIC-II in operation since 2009

Goal: Achieve the lowest energy threshold among CTs

Close gap between space & ground-based gamma-ray telescopes
The Cherenkov technique

Basic fact: Gamma-rays absorbed in atmosphere

Satellites
- Direct detection
- Small background
- Small Effective Area $\sim 1\text{m}^2$

Ground Detectors
- Indirect detection
- Enormous hadronic background
- Huge Effective Area $\sim 10^5\text{m}^2$

9th Agile Workshop, Rome, 2012
MAGIC Physics Targets

 Galactic

 Pulsars/ PWN
 SNRs

 Extragalactic

 AGN
 Radio galaxy

 Fundamental
 Physics

 dark matter
 space time

 Pulsars one of the hottest topics

9th Agile Workshop, Rome, 2012
Different models try to explain observed γ-ray emission.

- Assume different emitting region in magnetosphere → different emission geometry: PC, OG, SG

Spectrum depends on the physics of the emitting region

Light curves depend on geometry
Gamma-ray pulsars with space telescopes

- 101 pulsars found by Fermi
- Spectra up to ~ 10 GeV consistent with exp. cutoff

- Polar Cap rejected
- Outer Gap favored

D. Smith 2011 Fermi Symposium
Are Pulsars visible in VHE \(\gamma \)-rays?

- Models for HE emission (polar cap, outer or slot gap) predict \text{exp. or super exp. cutoffs @ few GeV.}
- Observational challenge for CTs since 20 years
MAGIC tried from the very beginning to detect pulsars
 – Developed dedicated hardware to help to the pulsar program (central pixel, sumtrigger,…)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopes</td>
<td>MAGIC I</td>
<td>MAGIC I</td>
<td>MAGIC I & II</td>
</tr>
<tr>
<td>Energy threshold</td>
<td>60 GeV</td>
<td>25 GeV</td>
<td>50 GeV</td>
</tr>
<tr>
<td>Sensitivity > 100 GeV</td>
<td>7.5% Crab</td>
<td>4.4% Crab</td>
<td>1.6 % Crab</td>
</tr>
<tr>
<td></td>
<td>Insufficient</td>
<td>The lowest</td>
<td>The best g/h</td>
</tr>
<tr>
<td></td>
<td>sensitivity</td>
<td>threshold</td>
<td>separation</td>
</tr>
</tbody>
</table>
MAGIC Crab pulsar Timeline

- **Oct. – Dec. 2005**
 - std. trigger (>60 GeV)
 - 2.9 σ excess in P_2!

- **Oct. 2007 – Feb 2008**
 - sum trigger (> 25 GeV)
 - 6.4 σ excess in P_1+P_2!!

 - sum trigger (> 25 GeV)

- **Oct. 2009 – Feb 2011**
 - stereo trigger (> 50 GeV)

Detection

Hint

(Fermi launched, 2008)

(MAGIC II commissioned, 2008)

(Sum trig. developed, 2008)

(Science 322, 2008)

9th Agile Workshop, Rome, 2012
First Crab pulsar detection above 25 GeV

Mono Observations with sumtrigger
- Oct.07 to Feb.08: 22.3 h

Clear detection: 6.4σ
Pulses in phase with EGRET

$P1$ clearly visible at 25 GeV
→ First Surprise

Pulsed emission still visible > 60 GeV!
$P2$ became dominant

9th Agile Workshop, Rome, 2012

Science 322 (2008) 1221

- 59 hours from Oct. 2007 to Feb. 2009 with SumTrigger

\[
P_1 (-0.06-0.04): 6200 +\ 1400 \text{ events (4.3 } \sigma) \\
P_2 (0.32-0.43): 11300 +\ 1500 \text{ events (7.4 } \sigma) \\
P_1 + P_2: 17500 +\ 2300 \text{ (7.5 } \sigma) \
\]

- Obtained total pulsed spectrum and spectra for each peak separately up to 100 GeV

Inconsistent with the extrapolation of the exponential cutoff (>5 σ).
Spectra between 25 GeV and 100 GeV show a power law.

<table>
<thead>
<tr>
<th></th>
<th>P₁ + P₂</th>
<th>P₁</th>
<th>P₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₀ at 30 GeV [10⁻⁹ cm⁻² s⁻¹ TeV⁻¹]</td>
<td>3.1+-1.0+-0.3</td>
<td>4.5+-2.3+-2.6</td>
<td>10.0 +-1.9 +- 2.6</td>
</tr>
<tr>
<td>Index</td>
<td>-3.4+-0.5+-0.3</td>
<td>-3.1 +- 1.0 +- 0.3</td>
<td>-3.4 +- 0.5 +- 0.3</td>
</tr>
</tbody>
</table>
MAGIC stereo

Two 17m telescopes observing in stereoscopic mode since fall ‘09

Why stereo?

Stereoscopic provides: better reconstruction of shower direction & additional shower parameters

This means:
- Better hadron rejection
- Better angular resolution: 0.1°@100 GeV, down to 0.04° E>1 TeV
- Better energy resolution: 20%@100 GeV, down to 15% at 1 TeV
- Enhances the sensitivity over the whole energy range (2-3 better)
- Energy threshold: ~ 50 GeV

Most sensitive observatory in the range 50-200 GeV
Stereo observations (2009-2011): Detection

- Used 73 h of stereo data from Oct09 to Feb1
 - 43 Wobble, 30 ON/OFF

- H-test gives 6.4 σ
 - P_1: 356 +/- 69 events (5.2 σ)
 - P_2: 880 +/- 101 events (8.9 σ)

- Pulsed emission detected up to 400 GeV !!

[Image of graph depicting event counts across different energy levels and phases]
Stereo observations (2009-2011): Detection

- Used 73 h of stereo data from Oct09 to Feb1
 - 43 Wobble, 30 ON/OFF

H-test gives 6.4 σ

P1: 356 +/− 69 events (5.2 σ)
P2: 880 +/− 101 events (8.9 σ)

Pulsed emission detected up to 400 GeV !!
Stereo observations (2009-2011): Detection

Light curve morphology

- Peaks width get narrower with energy

The pulses are aligned, becoming very narrow @ VHE
VHE spectrum of Crab pulsar

- **MAGIC Stereo** provides spectra up to **400 GeV**.

- **Mono/stereo spectra** agree... and go well beyond a cutoff at few GeV!

In agreement with VERITAS (Aliu et.al 2011)
Stereo observations (2009-2011): Spectrum

First pulsar Phase-resolved spectrum @ hundreds GeV!

- **First Peak**
 - Good agreement to MAGIC-Mono (< 2 Sigma despite different systematics)

- **Second Peak**

SUMMARY

MAGIC measurements rule out extrapolation of Fermi exponential fit.
A possible explanation for a VHE tail (I)

- Extension of Outer Gap scenario by K. Hirotani (arXiv:1108.5391)
 - Detected VHE pulsed emission caused by IC scattering of secondary & tertiary e±-pairs on magnetospheric IR-UV ph.
 - Predicted Power law component from 10 Gev up to 1 TeV
 - In the calculations, angle between rotational and B axes assumed to be 65°, and observer’s viewing angle 106°.

MAGIC mono & stereo spectra reproducible with self-consistent OG model
A possible explanation for a VHE tail (II)

Alternative explanation by Aharonian et al. (*Nature* 482, 2012)

- VHE component resulting from the abrupt acceleration of a cold ultrarelativistic wind
 - Wind accelerated in a narrow zone (20-50 light-cylinder radii), up to a Lorentz factor of \((0.5 - 1.0) \cdot 10^6\)
 - IC γ-ray emission of the wind explains emission >100 GeV
Summary

In the last years MAGIC contributed to the understanding of the gamma-ray emission of the Crab Pulsar

MAGIC detected the Crab pulsar in mono and stereo mode, and with different trigger schemes
- First detection of Crab pulsar with a CT
- Both peaks visible & Cutoff higher than expected

The combination of mono and stereo observations allowed to obtain spectrum from 25 to 400 GeV
- First time phase resolved spectroscopy at VHE
- Spectra following a power law instead of exp. cutoff

Does other pulsar have a power-law tail?