The observation of Gamma Ray Bursts with AGILE

E. Del Monte

INAF IAPS Roma

on behalf of the AGILE GRB WG
Outline

Introduction;

Description of the AGILE instrumentation;

The AGILE GRBs:

- GRB 080514B (delayed and extended emission, same spectrum at keV and GeV energies);
- GRB 090510 (short with delayed component and spectral evolution);
- GRB 100724B (simultaneous emission at MeV and GeV);
- GRB 090401B (complete covering by Swift);

Upper limits in gamma-rays of the undetected GRBs;

Possible interpretation (prompt vs afterglow emission)

Conclusions
Five GRBs coincident in time with BATSE triggers were detected by EGRET above 100 MeV;

They showed both simultaneous and extended emission of gamma rays, until a few hundreds of seconds after trigger (with GRB 940217 until more than 5000 s);

In some GRBs (e.g. GRB 930131) the spectrum in 1 MeV – 1 GeV is modeled by the same powerlaw, others (e.g. GRB 941017) show additional components;

The afterglow emission was not yet discovered, thus the redshift was not known.
The context before AGILE

BeppoSAX opened the way to the X-ray and optical follow-up of GRBs and the redshift of several events was discovered;

In the fireball model, the prompt emission is attributed to internal shocks, the afterglow to external shocks;

Swift repoints GRBs in ~100 s and observes them in X-rays and optical/UV;

GRBs observed by Swift at redshift of 6.29 (Cusumano et al., 2007), 8.1 (Salvaterra et al., 2009) and even 9.4 (Cucchiara et al., 2011) are among the most distant objects in the Universe;

The complex phenomenology of the afterglow was discovered. The flares in the afterglow likely represent extended activity of the central engine;

Our knowledge in gamma-rays was confined to the few events observed by EGRET.
The AGILE instrumentation

Gamma Ray Imaging Detector
Silicon tracking detector

GRID FoV

SA FOV
GRID FOV
- Localized by Super-AGILE
- Localized by IPN
- Localized by SWIFT
- Localized by Fermi-GBM
- Localized by INTEGRAL

Ettore Del Monte, INAF IAPS Roma
9th AGILE Science Workshop, Frascati 17 April 2012
GRB 080514B (Giuliani et al., 2008, A&A) is the first gamma ray bright GRB after EGRET and it is also associated to an afterglow and a photometric redshift measure of 1.8 (A. Rossi et al., 2008, A&A).
A single model for the whole spectrum of GRB 080514B

\[\alpha = -0.599 \]
\[\beta = -2.48 \]

\[E_{\text{peak}} = 224 \text{ keV} \]

The same Band model fits the spectrum from 20 keV up to 50 MeV.

Ettore Del Monte, INAF IAPS Roma

9th AGILE Science Workshop, Frascati 17 April 2012
Short GRB 090510: the prompt emission in the MeV band

Lightcurves of the AGILE/MCAL with 4 ms bin size.

A clear spectral evolution is detected, with the second peak harder than the first one.

GRB 090510 has been localized by Swift and detected also by Fermi/LAT (Ackermann et al. 2010) and AGILE (Giuliani et al. 2010). The redshift is 0.903 (De Pasquale et al. 2010).
GRB 090510: the delayed emission

\[F_v \sim t^{-\alpha} \]

\[\alpha \approx 1.3 \]

prompt emission interval

delayed emission interval

prompt emission interval

delayed emission interval
GRB 090510: spectral evolution in a short GRB

Powerlaw with cutoff
\[\alpha_1 = 0.6 \pm 0.3 \]
\[E_c = 2.8 \pm 0.9 \text{ MeV} \]
\[1.8 \times 10^{-5} \text{ erg/cm}^2 (0.5 - 10 \text{ MeV}) \]

Powerlaw without cutoff
\[\alpha_2 = 1.6 \pm 0.1 \]
\[3.1 \times 10^{-6} \text{ erg/cm}^2 (0.5 - 10 \text{ MeV}) \]
\[\alpha_3 = 1.4 \pm 0.4 \]
\[2.9 \times 10^{-5} \text{ erg/cm}^2 (25 - 500 \text{ MeV}) \]

No time lag is found between the MeV and GeV emission. The two main bumps in the lightcurve show a remarkably similar shape at MeV and GeV.

Due to the spinning operative mode, GRB 100724B remained within the GRID FoV between $t_0 + 6$ s and $t_0 + 125$ s.

The GRB is not detected during the next “transit” in the FoV (from $t_0 + 410$ s until $t_0 + 529$ s).

SuperAGILE was not collecting data for telemetry sharing reasons.

GRB 100724B: spectral evolution

A: t_0, $t_0 + 40$ s; photon index=2.01 ± 0.04

B: $t_0 + 40$ s, $t_0 + 57$ s; photon index=$2.19 (+0.26,-0.19)$

C: $t_0 + 57$ s, $t_0 + 90$ s; photon index=$2.35 (+0.08,-0.07)$

A variation at 4.2σ is found in the spectral indices.
GRB 100724B: minimum bulk Lorentz factor

Following the method reported in the Supporting Online Material of the paper about GRB 080916C (Abdo et al 2009, Science, 323, 1688), $\Gamma_{\text{min}} = \Gamma_{\text{min}}(z, \Delta t, E_{\text{max}}, \beta)$.

The estimated Lorentz factor is similar to other GeV-bright GRBs (e. g. GRB 080916C, GRB 090902B and GRB 090510).
GRB 090401B: prompt emission

Longo et al., in preparation

68% of the gamma ray photons are emitted during prompt;

32% of the gamma ray photons are in the extended emission
GRB 090401B: the importance of the afterglow

\[F_v \sim t^{-\alpha} \]

\[\alpha_1 \approx 1.16 \pm 0.03 \]

\[\alpha_2 \approx 1.47 \pm 0.02 \]

\[t_{\text{break}} = 574 \text{ s} \]

(P. Schady et al., Swift report 208)

Swfit/BAT prompt emission

Swift/XRT X-ray afterglow

WT mode, PC mode

Longo et al., in preparation
Upper limits in gamma rays: the sample

68 GRBs in the GRID-FOV July 2007 – October 2009:

36 localized by Swift
17 localized by Fermi-GBM
10 localized by SuperAGILE
5 localized by INTEGRAL

13 also detected by MCAL

Longo et al. 2011, submitted to A&A
Expected flux derived from the available spectral info and compared with upper limits.

Sample of 68 GRBs in the AGILE/GRID field of view (between 2007 and 2009) localized by Swift, Fermi/GBM, SuperAGILE and INTEGRAL.

No gamma ray afterglow is detected 3600 s after trigger.
Upper limits in gamma-rays: the results

The upper limits are estimated with a Bayesian approach for a sample of 68 undetected GRBs from July 2007 until October 2009 with position inside the GRID Field of View;

40 GRBs have spectral information (from Konus-Wind, Suzaku/WAM and Fermi/GBM), that is used to convert counts into flux;

In six cases the upper limit is stringent with respect to the extrapolation of the GRB spectrum at lower energy;

The corresponding 3 sigma upper limit is \(\sim 0.03 \text{ ph cm}^{-2} \text{ s}^{-1} \Rightarrow \sim 10^{-7} \text{ erg cm}^{-2} \text{ s}^{-1} \);

A likelihood search of gamma-ray delayed components (up to 3600 s after trigger) for the same events does not give positive results;

The AGILE/GRID upper limits are consistent with the MAGIC upper limits at TeV;

The detection rate of GRBs by AGILE/GRID is discussed and it is found that AGILE observes on average the same population as EGRET;
The X-ray afterglow of GRB 111211A

Swift/XRT data of GRB 111211A

First GTC observation

Second GTC observation, Supernova

In preparation!!!
Prompt or afterglow emission?

In favour of the prompt (internal shock) interpretation:

- the same Band spectrum, and simultaneity (e.g. GRB 100724B) suggest that a single mechanism is at work (Maxham et al. 2011);
- the correlated variability at MeV and GeV (e.g. GRB 080916C, Abdo et al., Science, 2009) is an indication of simultaneous emission in the same region.

In favour of the afterglow (external shock) interpretation:

- delayed onset, longer duration and powerlaw time decay are typical of the external shock (Ghisellini et al. 2010);
- Kumar & Barniol-Duran 2010 find that the external forward shock parameters from the gamma-ray spectrum and lightcurve are compatible with them from late-time optical and X-ray data;
- additional powerlaw components (e.g. GRB 090902B), may be explained with synchrotron emission from external shock (Zhang et al. 2011).
Only a small subsample of GRBs emits in gamma rays: the overall detection rate (AGILE + Fermi) is ~10 events per year (consistent with the expectations of Band et al. 2009);

GeV emitting are the brightest GRBs (> 10^{-5} erg/cm2 at keV – MeV, Ghisellini et al. 2010) and have a high minimum Lorentz factor (600 – 1000);

Both long (e. g. GRB 080514B, GRB 0904041B, GRB 100724B) and short events (e. g. GRB 090510) are detected in the gamma energy band;

Some events have a single spectrum (e. g. GRB 080514B, Giuliani et al. 2009; GRB 100724B) other have additional spectral components (e. g. GRB 090510, Giuliani et al. 2010, Ackermann et al. 2010; GRB 090902B <50 keV and >100 MeV, Abdo et al. 2009);

Up to now no signature seems to be found in the X-ray and optical afterglow of the GeV emitting GRBs but see also Swenson et al. 2010. In particular, no gamma rays are detected by AGILE simultaneously with flares in the afterglow, while a flare from GRB 100728A has been detected by Fermi/LAT (Abdo et al., arXiv:1104.5496);

Gamma-ray emitting GRBs seems to be in the “high tail” of the population and characterised by high luminosity and high Lorentz factor. It is still debated if gamma-rays are produced in internal (prompt) or external (afterglow) shocks.