Terrestrial Gamma-ray Flashes

M. Marisaldi – INAF-IASF Bologna
On behalf of the AGILE TGF Team

AstroEarth

astrophysics and high-energy terrestrial phenomena

ASI, Rome
May 8-9, 2014
Take-home message:

Thunderstorms are the most powerful and energetic natural particle accelerators on Earth

And many groups in the world are becoming aware of this
The discovery of TGFs: serendipity at play

Vela satellites '70-'80 looking down to Earth...

GRB

BATSE onboard CGRO 1991 – 2000 looking up to space...

TGF

Light Curve for a Terrestrial Gamma Flash

9 May 2014
M. Marisaldi - 12 AGILE WS
TGFs 20th birthday!

- Energy > 1MeV, harder than GRBs
- Very bright, \sim 1\text{ms} duration
- Associated to lightning

9 May 2014
What do we really know about TGFs?

Illustration: Hans Møller, mollers.dk

Credits: Michael Briggs, EGU 2014
Physical scenario: runaway electrons

Cold runaway: any electron goes relativistic

Conventional breakdown: ionization > attachment

Relativistic runaway regime: seed electrons get accelerated to relativistic energies and undergo avalanche multiplication

\[F(eV/cm) \]

\[E_c \sim 260 \text{ kV/cm} \]

\[E_k \sim 32 \text{ kV/cm} \]

\[E_{cr}^- \sim 12.5 \text{ kV/cm} \]

\[E_{cr}^+ \sim 4.4 \text{ kV/cm} \]

\[E_I \sim 2 \text{ kV/cm} \]

\[E_I \sim 1 \text{ kV/cm (gaps > 30 m, Raizer, 1991, page 362)} \]

\[\frac{E_c}{E_k} \sim 8 \]

\[\frac{E_c}{E_I} \sim 130 \]

\[\frac{E_k}{E_I} \sim 16 \]
Two competing models

Dwyer and Smith, Scientific American (2012)

Dwyer, Smith & Cummer (2012)

Celestin+ (2011)
TGF / lightning connection

Connaughton+ JGR (2013)

Cummer+ GRL (2011)
TGF / lightning connection

Ostgaard+2013

Credits: birkeland.uib.no
Observational breakthrough

TGF related publications (from ADS)

- TGF discovery by BATSE
- RHESSI
- AGILE
- Fermi

Association to lightning
- Cumulative spectrum
- Energy up to 20 MeV
- Production altitude < 20km

New!
- Energy > 40 MeV up to ~ 100 MeV
- First localization in γ-rays from space
- TGF & global lightning activity
- 1st AGILE catalog

+ ground lightning location networks

- Discovery of e⁺/e⁻ flashes
- Radio emission from TGFs
- Improved selection

9 May 2014
M. Marisaldi - AGILE WS
Operating TGF detectors

Data from: Smith et al. (2002), Meegan et al. (2009), Labanti et al. (2009), Tavani et al. (2009)

9 May 2014
M. Marisaldi - 12 AGILE WS
AGILE contributions to TGF science

- TGF energy range extends at least to 40 MeV, doubling the previous range set by RHESSI:

- TGFs can be localized from space directly in gamma-rays by the AGILE silicon tracker:
AGILE contributions to TGF science

- TGFs high-energy spectrum extends up to ~100 MeV and challenges current models:

- The TGF / lightning flash ratio is not constant over different geographical regions:
AGILE contributions to TGF science

- TGFs can potentially affect aircrafts avionics:
 Tavani et al., NHESS 13 (2013)

- AGILE TGFs in the frame of current observational framework; delivery of the 1st AGILE TGF catalog:
Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV

M. Marisaldi1,2, F. Fuschino1, M. Tavani3,4, S. Dietrich5, C. Price6, M. Galli7, C. Pittori8,9, F. Verrecchia8,9, S. Mereghetti1, P.W. Cattaneo1, S. Colafrancesco9,12, A. Argan13, C. Labanti14, F. Longo14,15, E. Del Monte1, G. Barbieri4,15, A. Giuliani16, A. Bulgarelli1, R. Campana1, A. Chen16,12, F. Gianotti1, P. Giommi1, F. Lazzerotto1, A. Morselli14, M. Rapisarda17, A. Rappoldi11, M. Trifoglio1, A. Trois18, and S. Vercellone19

Properties of Terrestrial Gamma-Ray Flashes detected by AGILE MCAL below 30 MeV

TGF (E < 30 MeV) observed from March 2009 to July 2012
An interactive tool for the TGF community
Available at the ASI Science Data Center (ASDC) website: www.asdc.asi.it/mcaltgfcat

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Selection mode</th>
<th>TGF ID</th>
<th>GeoLon</th>
<th>GeoLat</th>
<th>Date (UTC)</th>
<th>TGF Trigger Time TO (s)</th>
<th>TGF TO micros (μs)</th>
<th>TGF TSO (ms)</th>
<th>Raw Counts</th>
<th>HR</th>
<th>ML Counts+/–Err</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select</td>
<td>090302.71821</td>
<td>17.42</td>
<td>-1.64</td>
<td>2009-03-02T17:14:14</td>
<td>163098854</td>
<td>254076</td>
<td>0.103</td>
<td>12</td>
<td>1.4</td>
<td>10.8+/–3.3</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Select</td>
<td>090308.40378</td>
<td>110.96</td>
<td>-2.33</td>
<td>2009-03-08T09:41:27</td>
<td>163590087</td>
<td>958609</td>
<td>0.48</td>
<td>17</td>
<td>1.4</td>
<td>19.9+/–4.8</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Select</td>
<td>090308.51530</td>
<td>106.13</td>
<td>-1.46</td>
<td>2009-03-08T14:46:02</td>
<td>163608362</td>
<td>205006</td>
<td>0.154</td>
<td>10</td>
<td>2.3</td>
<td>10.7+/–3.3</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Select</td>
<td>090309.25894</td>
<td>136.68</td>
<td>-1.93</td>
<td>2009-03-09T06:12:33</td>
<td>163663973</td>
<td>166556</td>
<td>0.22</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Select</td>
<td>090309.37239</td>
<td>-6.65</td>
<td>1.89</td>
<td>2009-03-09T08:56:15</td>
<td>163673775</td>
<td>205677</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Select</td>
<td>090309.37239</td>
<td>-6.65</td>
<td>1.89</td>
<td>2009-03-09T08:56:15</td>
<td>163673775</td>
<td>207136</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Select</td>
<td>090315.25166</td>
<td>-8.08</td>
<td>1.73</td>
<td>2009-03-15T06:02:24</td>
<td>164181744</td>
<td>594547</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Select</td>
<td>090315.34739</td>
<td>28.88</td>
<td>-2.43</td>
<td>2009-03-15T13:01:03</td>
<td>164206863</td>
<td>83205</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>Select</td>
<td>090318.11112</td>
<td>121.28</td>
<td>-2.15</td>
<td>2009-03-18T02:40:01</td>
<td>164428801</td>
<td>655135</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Select</td>
<td>090320.97835</td>
<td>-65.7</td>
<td>1.17</td>
<td>2009-03-20T23:28:50</td>
<td>164676530</td>
<td>559745</td>
<td>0.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Select</td>
<td>090321.13434</td>
<td>7.48</td>
<td>0.89</td>
<td>2009-03-21T03:13:27</td>
<td>164690007</td>
<td>624520</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>Select</td>
<td>090323.70296</td>
<td>100.89</td>
<td>2.16</td>
<td>2009-03-23T16:52:16</td>
<td>16491936</td>
<td>749444</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Select</td>
<td>090326.75312</td>
<td>121.85</td>
<td>-0.17</td>
<td>2009-03-26T18:04:30</td>
<td>165175470</td>
<td>924223</td>
<td>0.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Select</td>
<td>090330.00988</td>
<td>112.88</td>
<td>-2.23</td>
<td>2009-03-30T00:14:14</td>
<td>165456854</td>
<td>92700</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Select</td>
<td>090403.32898</td>
<td>102.52</td>
<td>2.4</td>
<td>2009-04-03T07:53:44</td>
<td>165830024</td>
<td>513614</td>
<td>0.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>Select</td>
<td>090403.47065</td>
<td>102.34</td>
<td>1.93</td>
<td>2009-04-03T11:17:45</td>
<td>165842265</td>
<td>218152</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Select</td>
<td>090403.54289</td>
<td>109.32</td>
<td>0.75</td>
<td>2009-04-03T13:01:46</td>
<td>165848506</td>
<td>649177</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>Select</td>
<td>090403.86059</td>
<td>-75.86</td>
<td>2.46</td>
<td>2009-04-03T20:39:15</td>
<td>165875955</td>
<td>460826</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>Select</td>
<td>090404.46177</td>
<td>95.27</td>
<td>1.87</td>
<td>2009-04-04T11:04:57</td>
<td>165927897</td>
<td>569787</td>
<td>0.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>Select</td>
<td>090414.64481</td>
<td>9.89</td>
<td>-0.61</td>
<td>2009-04-14T15:28:32</td>
<td>166807712</td>
<td>294310</td>
<td>0.42</td>
<td>10</td>
<td>1</td>
<td>11.3+/–3.5</td>
<td>---</td>
</tr>
</tbody>
</table>

9 May 2014
M. Marisaldi - 12 AGILE WS
16
What is going on in the world?

Space

- AGILE, RHESSI, Fermi
- ASIM (ESA) - ISS
- TARANIS (CNES)
- Firefly (USA)
- Firestation (USA) – ISS
- GLIMS (JP) – ISS

Balloon

- COBRAT (CNES+)

Airplane

- ADELE (USA)
- ILDAS (NL)

Ground

- USA
- Japan
- Armenia

9 May 2014

M. Marisaldi - 12 AGILE WS
What next?

AGILE, RHESSI and Fermi still have a lot more to say!

ASIM
ESA >= 2014

TARANIS
CNES >= 2015

Listen to T. Neubert talk
A new life for AGILE

- Change of configuration: anticoincidence shield disabling for MCAL to reduce dead time and enhance short TGF detection

Detected number of counts

Without AC

With AC

TGF duration (T_{50})

AGILE Median = 0.29 ms
Fermi Median = 0.11 ms

Marisaldi+2014
A new life for AGILE

- Exploit AGILE peculiarities: the large TGF rate surface density above the equatorial region is fundamental to explore TGF / lightning flash asymmetric behavior.

Fuschino+2011
A new life for AGILE

- Exploit AGILE peculiarities: the extended energy range is fundamental to probe the emission models.

Low energy TGFs
(max energy < 30 MeV)
1st AGILE TGF catalog
Data + cutoff powerlaw model

Complete sample

High energy events
(max energy > 30 MeV)
Data + broken powerlaw model

Tavani+2011

Marisaldi+ in preparation
Conclusions / outlook

- TGFs are the manifestation of the most energetic natural particle accelerators on Earth
- After 20 years, lots of questions still do not have answers
- TGFs and radiation from atmospheric electricity is a fast growing scientific field
- European and American institutions are investing lots of efforts in this field
- AGILE can still give significant contribution in the field
- The AGILE Team and collaborators are the only Italian group in the field, BUT this position must be supported to be consolidated and maintained in the future